销售部门、营业厅、呼叫中心、业务支撑、经营分析部、网管/网优中心、运营分析部、系统 开发部等对业务数据分析有基本要求的相关人员。
课程目标:
本课程为大数据分析初级课程,面向所有应用型人员,包括业务部门,以及数据分析部门,系统开发人员也同样需要学习。
本课程核心内容是理清大数据的本质及核心理念,培训大数据人才的数据思维模式,以解决业务问题为导向,提升学员的数据分析综合能力。
本课程覆盖了如下内容:
1、大数据的本质,核心数据思维。
2、数据分析过程,数据分析工具。
3、数据分析方法,数据分析思路。
4、数据可视呈现,数据报告撰写。
本课程从实际的业务需求出发,结合行业的典型应用特点,围绕实际的商业问题,对数据分析及数据挖掘技术进行了全面的介绍(从数据收集与处理,到数据分析与挖掘,再到数据可视化和报告撰写),通过大量的操作演练,帮助学员掌握数据分析和数据挖掘的思路、方法、表达、工具,从大量的企业经营数据中进行分析,挖掘客户行为特点,帮助运营团队深入理解业务运作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。
通过本课程的学习,达到如下目的:
1、了解数据分析基础知识,掌握数据分析的基本过程。
2、学会数据分析的框架和思路,掌握常用数据分析方法来分析问题。
3、熟悉数据分析的基本过程,掌握Excel高级数据分析库操作。
4、熟悉大数据分析工具PowerBI,提升数据分析效率,避免重复工作。
学员要求:
1、每个学员自备一台便携机(必须)。
2、便携机中事先安装好Excel2013版本及以上。
3、便携机中事先安装好PowerBIDesktop软件。
注:讲师可以提供试用版本软件及分析数据源。
课程大纲:
第一部分:大数据的核心思维
问题:大数据的核心价值是什么?大数据是怎样用于业务决策?
1、大数据时代:你缺的不是一堆方法,而是大数据思维
2、大数据的本质
数据,是对客观事物的描述和记录
大数据不在于大,而在于全
3、大数据四大核心价值
用趋势图来探索产品销量规律
从谷歌的GFT产品探索用户需求变化
从大数据炒股看大数据如何探索因素的相关性
阿里巴巴预测经济危机的到来
从美国总统竞选看大数据对选民行为进行分析
4、大数据价值落地的三个关键环节
业务数据化
数据信息化
信息策略化
案例:喜欢赚“差价”的营业员(用数据管理来识别)
第二部分:数据分析基本过程
1、数据分析简介
数据分析的三个阶段
分析方法的三大类别
2、数据分析六步曲
3、步骤1:明确目的--理清思路
确定分析目的:要解决什么样的业务问题
确定分析思路:分解业务问题,构建分析框架
4、步骤2:数据收集—准备数据
明确收集数据范围
确定收集来源
确定收集方法
5、步骤3:数据预处理—准备数据
数据质量评估
数据清洗、数据处理和变量处理
探索性分析
6、步骤4:数据分析--寻找答案
选择合适的分析方法
构建合适的分析模型
选择合适的分析工具
7、步骤5:数据展示--观点表达
选择恰当的图表
选择合适的可视化工具
8、步骤6:报表撰写--观点表达
选择报告种类
完整的报告结构
9、演练:终端大数据精准营销案例赏析
如何搭建精准营销分析框架?
精准营销分析的过程和步骤?
精准营销分析结果呈现
第三部分:统计分析方法实战篇
问题:数据分析有什么方法可依?不同的方法适用解决什么样的问题?
1、数据分析方法的层次
描述性分析法(对比/分组/结构/趋势/交叉…)
相关性分析法(相关/方差/卡方…)
预测性分析法(回归/时序/决策树/神经网络…)
专题性分析法(聚类/关联/RFM模型/…)
2、统计分析基础
统计分析两大要素
统计分析三个步骤
3、统计分析常用指标
汇总方式:计数、求和、百分比(增跌幅)
集中程度:均值、中位数、众数
离散程度:极差、方差/标准差、IQR
分布形态:偏度、峰度
4、基本分析方法及其适用场景
对比分析(查看数据差距)
演练:寻找用户的地域分布规律
演练:寻找公司主打产品
演练:用数据来探索增量不增收困境的解决方案
案例:银行ATM柜员机现金管理分析(银行)
分组分析(查看数据分布)
案例:排班后面隐藏的猫腻
案例:通信运营商的流量套餐划分合理性的评估
演练:银行用户消费层次分析(银行)
演练:呼叫中心接听电话效率分析(呼叫中心)
演练:客服中心科学排班人数需求分析(客服中心)
演练:客户年龄分布/消费分布分析
结构分析(评估事物构成)
案例:用户市场占比结构分析
案例:物流费用占比结构分析(物流)
案例:中移动用户群动态结构分析
演练:用户结构/收入结构/产品结构的分析
趋势分析(发现事物随时间的变化规律)
案例:破解零售店销售规律
案例:手机销量的淡旺季分析
演练:发现产品销售的时间规律
交叉分析(多维数据分析)
演练:用户性别+地域分布分析
演练:不同区域的产品偏好分析
演练:不同教育水平的业务套餐偏好分析
5、综合分析方法及其适用场景(略)
综合评价法(多维指标归一)
案例:南京丈母娘选女婿分析表格
演练:人才选拔评价分析(HR)
杜邦分析法(关键因素分析-财务数据分析)
案例:运营商市场占有率分析(通信)
案例:服务水平提升分析(呼叫中心)
演戏:提升销量的销售策略分析(零售商/电商)
漏斗分析法(关键流程环节分析-流失率与转化率分析)
案例:电商产品销售流程优化与策略分析(电商)
演练:营业厅终端销售流程分析(电信)
演练:银行业务办理流程优化分析(银行)
矩阵分析法(产品策略分析-象限图分析法)
案例:工作安排评估
案例:HR人员考核与管理
案例:波士顿产品策略分析
6、最合适的分析方法才是硬道理。
第四部分:数据分析思路篇
问题:数据分析思路是怎样的?如何才能全面/系统地分析而不遗漏?
1、常用分析思路模型
2、企业外部环境分析(PEST分析法)
案例:电信行业外部环境分析
3、用户消费行为分析(5W2H分析法)
案例讨论:搭建用户消费习惯的分析框架(5W2H)
4、公司整体经营情况分析(4P营销理论)
5、业务问题专题分析(逻辑树分析法)
案例:用户增长缓慢分析
6、用户使用行为研究(用户使用行为分析法)
案例:终端销售流程分析
第五部分:数据分析策略
问题:数据多,看不明白,不知道从何处看出业务问题?
1、数据分析策略
先宏观,后微观
先整体,再部分
先普遍,再个别
先单维,再多维
先表象,再根因
先过去,再未来
2、数据解读要诀
看差距,找短板
看极值,评优劣
看分布,分层次
看结构,思重点
看趋势,思重点
看峰谷,找规律
看异常,找原因
3、解读要符合业务逻辑
案例:营业厅客流趋势分析
第六部分:数据呈现(根据需要讲解,课件留给学员参考)
1、常用图形类型及选择原则
2、基本图形画图技巧
3、图形美化原则
4、表格美化技巧
案例:绘图示例
第七部分:分析报告撰写(根据需要讲解,课件留给学员参考)
问题:如何让你的分析报告显得更专业?
1、分析报告的种类与作用
2、报告的结构
3、报告命名的要求
4、报告的目录结构
5、前言
6、正文
7、结论与建议
第八部分:PowerQuery预处理工具实战篇
1、PowerBI组件框架
PowerQuery超级查询器
PowerPivot超级透视表
PowerView交互式图表工具
2、获取和转换(PowerQuery)
数据处理的常见问题
PQ功能简介
3、多数据源读取
多数据源读取
演练:从文件/Excel/数据库/Web页获取数据源
4、数据组合/集成
数据的追加
变量的合并
文件夹合并
演练:数据集成(追加、合并、文件夹)
5、数据转换
数据表的管理
数据类型和格式
数据列的操作
数据行的操作
演练:数据预处理操作
6、PQ的本质—M语言
强大的M语言
第九部分:PowerView交互式图表工具实战篇
问题:如何让你的分析结果更直观易懂?如何让数据“慧”说话?
1、图表类型与作用
2、常用图形及适用场景
3、Powerview简介
4、常用图表制作
柱状图、条形图
折线图、饼图
5、复杂图形制作
双坐标图(不同量纲呈现)
对称条形图(对比)
散点图/气泡图(矩阵分析法)
瀑布图(成本、收益构成分析)
漏斗图(用户转化率分析)
演练:图表制作与演示
6、交互式图表
7、分层钻取
8、四种筛选器
第十部分:PowerPivot数据建模工具实战篇
1、PowerPivot简介
2、PP基本功能
数据分类
汇总方式
3、超级透视表
建模的核心:筛选器与计算器
建立多表关系模型
关系管理:新建、修改、删除
演练:数据预处理操作
4、度量值
度量值定义
度量值计算
度量值的双层筛选
演练:度量值使用
5、计算列
新建列
列与度量值的区别
6、DAX数据分析表达式
DAX公式
DAX运算符
DAX函数
DAX高级筛选函数
7、上下文
行上下文
筛选上下文
度量值的计算原理
上下文冲突时的上下文处理
结束:课程总结与问题答疑。
傅一航 老师
华为系大数据专家。计算机软件与理论硕士研究生(研究方向:数据挖掘、搜索引擎)。在华为工作十年,五项国家专利,在华为工作期间获得华为数项奖项,曾在英国、日本、荷兰和比利时等海外市场做项目,对大数据有深入的研究。
傅老师专注于大数据分析与挖掘、机器学习等应用技术,以及大数据系统部署解决方案。旨在将大数据的数据分析、数据挖掘、数据建模应用于行业及商业领域,解决行业实际的问题。
1、让决策更科学:将大数据应用于运营决策,用大数据探索领域发展规律和行业发展趋势,有效分析用户需求,并预测用户行为,最终实现市场变化预测,提升企业科学决策能力。
2、让管理更高效:将大数据应用于企业管理,用大数据呈现企业整体运营情况,诊断企业管理问题和风险,全面理解组织、产品、人员、营销、财务等要素间的相关性,实现企业资源的最优化配置,提升企业管理效率。
3、让营销更精准:将大数据应用于市场营销,解决营销中的用户群细分和品牌定位,客户价值评估,产品设计优化,产品最优定价等实际问题,实现精准营销和精准推荐,以最小的营销成本实现最大化的营销效果。
傅老师目前致力于将大数据技术应用于通信、金融、航空、电商、互联网、政府等领域。傅老师的课程最大特色:实战性强!“围绕业务问题+搭建分析框架+运用分析方法+建立分析模型+熟悉分析工具+形成业务策略”。以商业问题为起点,基于实际的业务应用场景(明确目的),搭建全面系统的业务框架和分析维度(分析思路),选择最合适的方法(分析方法),深入浅出的理论讲解(分析模型),使用简单实用的工具操作(分析工具),对分析结果进行有效的解读(数据可视化),最终形成具体的业务建议,实现业务分析/数据分析的闭环。
重思路:核心理念+分析思路;
重体系:分析过程+分析步骤;
重实战:分析方法+分析模型+分析工具;
重落地:数据可视化+数据解读+业务策略。
服务客户
傅老师曾提供过培训咨询服务的客户遍及通信、金融、交通、制造、政府等行业,包括华为、富士康、平安集团、中国银行、招商银行、光大银行、中信银行、交通银行、广电银通、西部航空、海南航空、中国移动、中国联通、中国电信、西部航空、安能物流、广州地铁、富维江森、东风日产、神南矿业、公交集团、广州税务、良品铺子、中冶赛迪、埃森哲、海天集团、正泰电器等单位和公司。
金融行业培训客户
中国银行:《大数据变革与商业模式创新》《大数据时代的精准营销》
广发银行:《大数据下的精准营销实战》四期
中信银行:《大数据分析与挖掘综合能力提升实战》叁期
交通银行:《大数据时代的精准营销》
安信证券:《大数据时代下的金融发展》
平安集团:《大数据思维与应用创新》
平安产险:《大数据分析综合能力提升》
平安寿险:《大数据分析与应用实战》
平安人寿:《大数据分析与应用实战》
平安银行:《大数据思维与应用创新》
农业银行:《Python大数据分析与挖掘》叁期
建设银行:《大数据思维与应用创新》两期
光大银行:《大数据分析与数据挖掘应用实战》四期
招商银行:《“数”说营销----大数据营销实战与沙盘》四期
杭州银货通科技:《大数据产业发展及应用创新》
广电银通:《大数据综合能力提升》
平安普惠金融:《Hadoop解决方案技术培训》
浦发银行:《大数据精准营销》
金融壹帐通:《大数据分析与挖掘综合能力提升实战》
中金所:《大数据思维与应用创新》